We present a novel self-supervised algorithm named MotionHint for monocular visual odometry (VO) that takes motion constraints into account. A key aspect of our approach is to use an appropriate motion model that can help existing self-supervised monocular VO (SSM-VO) algorithms to overcome issues related to the local minima within their self-supervised loss functions. The motion model is expressed with a neural network named PPnet. It is trained to coarsely predict the next pose of the camera and the uncertainty of this prediction. Our self-supervised approach combines the original loss and the motion loss, which is the weighted difference between the prediction and the generated ego-motion. Taking two existing SSM-VO systems as our baseline, we evaluate our MotionHint algorithm on the standard KITTI benchmark. Experimental results show that our MotionHint algorithm can be easily applied to existing open-sourced state-of-the-art SSM-VO systems to greatly improve the performance by reducing the resulting ATE by up to 28.73%.


翻译:我们提出了一种新型的自我监督算法,名为单眼视觉视像测量(MotionHint),该算法考虑到了运动限制。我们方法的一个关键方面是使用一种适当的运动模型,帮助现有的自监督单眼VO(SSM-VO)算法克服与当地微型算法有关的问题,这些算法在自监督的损失函数中是自监督的。该运动模型以神经网络PPnet为表达方式。它受过训练,可以粗略地预测相机的下一个形状和这一预测的不确定性。我们的自我监督方法将原来的损失和运动损失结合起来,即预测与产生的自我振动之间的加权差异。我们以现有的两种SSSM-VO系统作为基准,我们根据标准KITTI基准评估我们的移动算法。实验结果显示,我们的移动Hint算法可以很容易地应用到现有的开放源状态的SSSSMM-VO系统,通过将结果的ATE降低到28.73%来大大改进性能。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Top
微信扫码咨询专知VIP会员