A theory for diffusivity estimation for spatially extended activator-inhibitor dynamics modelling the evolution of intracellular signaling networks is developed in the mathematical framework of stochastic reaction-diffusion systems. In order to account for model uncertainties, we extend the results for parameter estimation for semilinear stochastic partial differential equations, as developed in [PS20], to the problem of joint estimation of diffusivity and parametrized reaction terms. Our theoretical findings are applied to the estimation of effective diffusivity of signaling components contributing to intracellular dynamics of the actin cytoskeleton in the model organism Dictyostelium discoideum.
翻译:在细胞内信号网络演化的模拟空间扩展活性器动力学动态模型的测算理论是在随机反应扩散系统的数学框架内开发的。为了计算模型的不确定性,我们将[PS20]中开发的半线性半切性局部差分方程参数估计结果扩大到对显性和对称反应术语的联合估计问题。我们的理论研究结果应用于估计模型有机体Dityosterium dicoideum 中有助于细胞内细胞内动力的信号组件的有效测算性。