In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the inference efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real world example. The simplicity and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when the number of baseline covariates is large, and when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.
翻译:暂无翻译