The recent success of deep learning techniques for abstractive summarization is predicated on the availability of large-scale datasets. When summarizing reviews (e.g., for products or movies), such training data is neither available nor can be easily sourced, motivating the development of methods which rely on synthetic datasets for supervised training. We show that explicitly incorporating content planning in a summarization model not only yields output of higher quality, but also allows the creation of synthetic datasets which are more natural, resembling real world document-summary pairs. Our content plans take the form of aspect and sentiment distributions which we induce from data without access to expensive annotations. Synthetic datasets are created by sampling pseudo-reviews from a Dirichlet distribution parametrized by our content planner, while our model generates summaries based on input reviews and induced content plans. Experimental results on three domains show that our approach outperforms competitive models in generating informative, coherent, and fluent summaries that capture opinion consensus.
翻译:最近深层学习抽象总结技术的成功取决于能否获得大规模数据集。当总结审查(例如产品或电影)时,这种培训数据既不可用,也不容易获取,从而推动开发依靠合成数据集进行监管培训的方法。我们表明,将内容规划明确纳入一个汇总模型不仅能产生更高质量的产出,而且能够创建更自然的合成数据集。我们的内容计划采取的形式是,我们从无法获取昂贵的注释的数据中产生的一些方面和情绪分布。合成数据集是来自由我们内容规划师根据成份的 Dirichlet分布配对的抽样伪审查,而我们的模型则根据投入审查和引出的内容计划生成摘要。三个领域的实验结果显示,我们的方法在生成信息性、一致性和流畅的概要方面优于竞争性模型,从而获得意见共识。