Analytics play an important role in modern business. Companies adapt data science lifecycles to their culture to seek productivity and improve their competitiveness among others. Data science lifecycles are fairly an important contributing factor to start and end a project that are data dependent. Data science and Machine learning life cycles comprises of series of steps that are involved in a project. A typical life cycle states that it is a linear or cyclical model that revolves around. It is mostly depicted that it is possible in a traditional data science life cycle to start the process again after reaching the end of cycle. This paper suggests a new technique to incorporate data science life cycle to business problems that have a clear end goal. A new technique called spiral technique is introduced to emphasize versatility, agility and iterative approach to business processes.


翻译:分析在现代商业中扮演着重要角色。企业将数据科学生命周期融入其文化,以寻求生产力并提升自身竞争力。数据科学生命周期是启动和结束依赖数据的项目的重要贡献因素。数据科学与机器学习生命周期包含项目中涉及的一系列步骤。典型的生命周期模型被描述为线性或循环模型。传统数据科学生命周期通常被描绘为在到达周期终点后可以重新启动流程。本文提出一种新技术,将数据科学生命周期应用于具有明确最终目标的商业问题。引入了一种称为螺旋技术的新方法,以强调业务流程的多样性、敏捷性和迭代性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2020年10月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员