Anomaly detection is important for industrial automation and part quality assurance, and while humans can easily detect anomalies in components given a few examples, designing a generic automated system that can perform at human or above human capabilities remains a challenge. In this work, we present a simple new anomaly detection algorithm called FADS (feature-based anomaly detection system) which leverages pretrained convolutional neural networks (CNN) to generate a statistical model of nominal inputs by observing the activation of the convolutional filters. During inference the system compares the convolutional filter activation of the new input to the statistical model and flags activations that are outside the expected range of values and therefore likely an anomaly. By using a pretrained network, FADS demonstrates excellent performance similar to or better than other machine learning approaches to anomaly detection while at the same time FADS requires no tuning of the CNN weights. We demonstrate FADS ability by detecting process parameter changes on a custom dataset of additively manufactured lattices. The FADS localization algorithm shows that textural differences that are visible on the surface can be used to detect process parameter changes. In addition, we test FADS on benchmark datasets, such as the MVTec Anomaly Detection dataset, and report good results.
翻译:对工业自动化和部分质量保证来说,异常检测很重要,虽然人类可以很容易地探测到某些例子所列举的各组成部分的异常现象,但设计一个通用自动化系统,能够在人或人的能力上达到人的能力或高于人的能力,仍然是一项挑战。在这项工作中,我们提出了一个简单的新的异常检测算法,称为FADS(基于地貌的异常检测系统),它利用预先训练的进化神经神经神经神经神经网络(CNN),通过观察卷变过滤器的启动,生成一个名义投入的统计模型。在推断系统比较了统计模型和标志激活新输入的动态过滤器的启动,这些输入的功能超出了预期值范围,因此可能出现异常。此外,通过使用预先训练的网络,FADS展示了与异常检测其他机器学习方法相似或更好的性能,同时FADS不需要调整CNN的重量。我们通过检测添加剂制造拉特克的定制数据集的流程参数变化来证明FADS的能力。FADS本地化算法表明,在表面可见的质变差异可以用来检测过程参数变化。此外,我们还测试了MVDS和基准数据设置。