Meta-analysis can be formulated as combining $p$-values across studies into a joint $p$-value function, from which point estimates and confidence intervals can be derived. We extend the meta-analytic estimation framework based on combined $p$-value functions to incorporate uncertainty in heterogeneity estimation by employing a confidence distribution approach. Specifically, the confidence distribution of Edgington's method is adjusted according to the confidence distribution of the heterogeneity parameter constructed from the generalized heterogeneity statistic. Simulation results suggest that 95% confidence intervals approach nominal coverage under most scenarios involving more than three studies and heterogeneity. Under no heterogeneity or for only three studies, the confidence interval typically overcovers, but is often narrower than the Hartung-Knapp-Sidik-Jonkman interval. The point estimator exhibits small bias under model misspecification and moderate to large heterogeneity. Edgington's method provides a practical alternative to classical approaches, with adjustment for heterogeneity estimation uncertainty often improving confidence interval coverage.
翻译:元分析可以表述为将各研究中的$p$值合并为一个联合$p$值函数,并从中推导出点估计和置信区间。我们通过采用置信分布方法,将基于合并$p$值函数的元分析估计框架扩展至包含异质性估计的不确定性。具体而言,根据广义异质性统计量构建的异质性参数的置信分布,对Edgington方法的置信分布进行调整。模拟结果表明,在涉及三个以上研究且存在异质性的大多数场景中,95%置信区间接近名义覆盖水平。在无异质性或仅有三项研究的情况下,置信区间通常呈现过覆盖,但往往比Hartung-Knapp-Sidik-Jonkman区间更窄。在模型设定错误和中等到较大异质性条件下,点估计量表现出较小的偏差。Edgington方法为经典方法提供了一种实用的替代方案,其对异质性估计不确定性的调整通常能改善置信区间的覆盖性能。