This paper introduces a defense approach against end-to-end adversarial attacks developed for cutting-edge speech-to-text systems. The proposed defense algorithm has four major steps. First, we represent speech signals with 2D spectrograms using the short-time Fourier transform. Second, we iteratively find a safe vector using a spectrogram subspace projection operation. This operation minimizes the chordal distance adjustment between spectrograms with an additional regularization term. Third, we synthesize a spectrogram with such a safe vector using a novel GAN architecture trained with Sobolev integral probability metric. To improve the model's performance in terms of stability and the total number of learned modes, we impose an additional constraint on the generator network. Finally, we reconstruct the signal from the synthesized spectrogram and the Griffin-Lim phase approximation technique. We evaluate the proposed defense approach against six strong white and black-box adversarial attacks benchmarked on DeepSpeech, Kaldi, and Lingvo models. Our experimental results show that our algorithm outperforms other state-of-the-art defense algorithms both in terms of accuracy and signal quality.
翻译:本文引入了一种防御方法, 防止为尖端语音到文字系统开发的端到端对端攻击。 提议的防御算法有四大步骤 。 首先, 我们代表使用短时间 Fourier 变换的 2D 光谱图的语音信号 。 第二, 我们迭代地使用光谱子子空间投影操作找到一个安全的矢量 。 此操作将光谱图之间的频谱距离调整最小化, 并附加一个正规化的术语 。 第三, 我们使用经过Sobolev 综合概率度指标培训的新型GAN 结构将光谱与这样的安全矢量合成。 为了改进模型在稳定性和学习模式总数方面的性能, 我们对发电机网络施加了额外的限制。 最后, 我们从合成光谱和格里芬- Liming- Lim 阶段近似技术中重建了信号。 我们评估了拟议的防御方法, 以DeepSpeech、 Kaldi 和 Lingvo 模型为基准的六起强烈的黑箱对立式攻击。 我们的实验结果显示, 我们的算法在准确性和信号质量方面超越了其他的状态防御算法。