We consider estimation and inference in a single index regression model with an unknown convex link function. We introduce a convex and Lipschitz constrained least squares estimator (CLSE) for both the parametric and the nonparametric components given independent and identically distributed observations. We prove the consistency and find the rates of convergence of the CLSE when the errors are assumed to have only $q \ge 2$ moments and are allowed to depend on the covariates. When $q\ge 5$, we establish $n^{-1/2}$-rate of convergence and asymptotic normality of the estimator of the parametric component. Moreover, the CLSE is proved to be semiparametrically efficient if the errors happen to be homoscedastic. {We develop and implement a numerically stable and computationally fast algorithm to compute our proposed estimator in the R package~\texttt{simest}}. We illustrate our methodology through extensive simulations and data analysis. Finally, our proof of efficiency is geometric and provides a general framework that can be used to prove efficiency of estimators in a wide variety of semiparametric models even when they do not satisfy the efficient score equation directly.
翻译:我们在一个单一指数回归模型中考虑估算和推论,该模型具有未知的 convex 连接功能。 我们为独立和分布完全的参数性和非参数性观测,引入了 convex 和 Lipschitz 限制最小方数估计器(CLSE) 。 我们证明CLSE的一致性并找到其趋同率,如果错误假定只有 q\ ge 2 秒,并允许根据共变计算。 当 $\ ge 5 时, 我们通过广泛的模拟和数据分析来说明我们的方法。 最后, 我们的效率的证明是几何性,而且如果错误发生为同质性,CLSE可以提供半偏差效率。 {我们开发和实施一个数字稳定和计算快速的算法,以便在R supproducttt{simest} 中计算我们提议的估计器。 我们通过广泛的模拟和数据分析来说明我们的方法。 最后, 我们的效率的证明是测量和总框架,甚至可以用来在证明它们能直接证实半位数的方位数效率时,用来证明它们是如何测量的模型。