The linear code equivalence (LCE) problem is shown to be equivalent to the point set equivalence (PSE) problem, i.e., the problem to check whether two sets of points in a projective space over a finite field differ by a linear change of coordinates. For such a point set $\mathbb{X}$, let $R$ be its homogeneous coordinate ring and $\mathfrak{J}_{\mathbb{X}}$ its canonical ideal. Then the LCE problem is shown to be equivalent to an algebra isomorphism problem for the doubling $R/\mathfrak{J}_{\mathbb{X}}$. As this doubling is an Artinian Gorenstein algebra, we can use its Macaulay inverse system to reduce the LCE problem to a Polynomial Isomorphism (PI) problem for homogeneous polynomials. The last step is polynomial time under some mild assumptions about the codes. Moreover, for indecomposable iso-dual codes we can reduce the LCE search problem to the PI search problem of degree 3 by noting that the corresponding point sets are self-associated and arithmetically Gorenstein, so that we can use the isomorphism problem for the Artinian reductions of the coordinate rings and form their Macaulay inverse systems.


翻译:线性码等价性(LCE)问题被证明等价于点集等价性(PSE)问题,即判断有限域上射影空间中两个点集是否仅通过坐标的线性变换而不同。对于这样的点集 $\mathbb{X}$,设 $R$ 为其齐次坐标环,$\mathfrak{J}_{\mathbb{X}}$ 为其典范理想。则 LCE 问题可转化为其倍增代数 $R/\mathfrak{J}_{\mathbb{X}}$ 的代数同构问题。由于该倍增代数是 Artinian Gorenstein 代数,我们可以利用其 Macaulay 逆系统将 LCE 问题约化为齐次多项式的多项式同构(PI)问题。在关于码的一些温和假设下,最后一步可在多项式时间内完成。此外,对于不可分解的 iso-dual 码,通过注意到对应的点集是自关联且算术 Gorenstein 的,我们可以将 LCE 搜索问题约化为三次多项式的 PI 搜索问题,从而利用坐标环的 Artinian 约化的同构问题并构造其 Macaulay 逆系统。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年6月24日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员