Multi-label image classification is about predicting a set of class labels that can be considered as orderless sequential data. Transformers process the sequential data as a whole, therefore they are inherently good at set prediction. The first vision-based transformer model, which was proposed for the object detection task introduced the concept of object queries. Object queries are learnable positional encodings that are used by attention modules in decoder layers to decode the object classes or bounding boxes using the region of interests in an image. However, inputting the same set of object queries to different decoder layers hinders the training: it results in lower performance and delays convergence. In this paper, we propose the usage of primal object queries that are only provided at the start of the transformer decoder stack. In addition, we improve the mixup technique proposed for multi-label classification. The proposed transformer model with primal object queries improves the state-of-the-art class wise F1 metric by 2.1% and 1.8%; and speeds up the convergence by 79.0% and 38.6% on MS-COCO and NUS-WIDE datasets respectively.


翻译:多标签图像分类是预测一系列类标签,可被视为无序顺序数据。 变换器处理整个顺序数据,因此它们本身对设定预测十分有利。 第一个基于视觉的变异器模型,是为对象检测任务而提出的,它引入了对象查询的概念。 对象查询是可学习的定位编码,由调码器层的注意模块用来用图像中的利益区域解码对象类别或捆绑框。 但是,将同一组对象查询输入不同的解码器层会阻碍培训:它导致性能下降和延迟趋同。 在本文中,我们提议使用仅在变异器解码器堆开始时提供的原始对象查询。此外,我们改进了多标签分类的拟议混合技术。提议的带有原始对象查询的变异器模型可以将最先进的级智能F1测量器改进2.1%和1.8 %的状态;并加快MS-CO和NUS-WIDE数据集的趋同率,分别提高79.0%和38.6%。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
德先生
53+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月13日
An Analysis of Object Embeddings for Image Retrieval
Arxiv
4+阅读 · 2019年5月28日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
德先生
53+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员