The ability to modify morphology in response to environmental changes represents a highly advantageous feature in biological organisms, facilitating their adaptation to diverse environmental conditions. While some robots have the capability to modify their morphology by utilizing adaptive body parts, the practical implementation of morphological transformations in robotic systems is still relatively restricted. This limitation can be attributed, in part, to the intricate nature of achieving such transformations, which necessitates the integration of advanced materials, control systems, and design approaches. In nature, a range of morphology adaptation strategies is employed to achieve optimal performance and efficiency, such as those employed by crocodiles and alligators, who adjust their body posture depending on the speed and the surface they traverse on. Drawing inspiration from these biological examples, this paper introduces Adjustbot, a quadruped robot with an undulating body capable of adjusting its body posture. Its adaptive morphology allows it to traverse a wide range of terradynamically challenging surfaces and facilitates avoidance of collisions, navigation through narrow channels, obstacle traversal, and incline negotiation.
翻译:暂无翻译