Modern NLP models are becoming better conversational agents than their predecessors. Recurrent Neural Networks (RNNs) and especially Long-Short Term Memory (LSTM) features allow the agent to better store and use information about semantic content, a trend that has become even more pronounced with the Transformer Models. Large Language Models (LLMs) such as GPT-3 by OpenAI have become known to be able to construct and follow a narrative, which enables the system to adopt personas on the go, adapt them and play along in conversational stories. However, practical experimentation with GPT-3 shows that there is a recurring problem with these modern NLP systems, namely that they can "get stuck" in the narrative so that further conversations, prompt executions or commands become futile. This is here referred to as the "Locked-In Problem" and is exemplified with an experimental case report, followed by practical and social concerns that are accompanied with this problem.


翻译:现代NLP模式正在变得比其前身更好的对话代理人。 经常的神经网络(NNN),特别是长期短期内存(LSTM)特征使得该代理人能够更好地储存和使用语义内容信息,这种趋势随着变异模型而变得更加明显。 众所周知,OpenAI的GPT-3等大语言模型(LLMs)能够构建和遵循一个叙事,使系统能够接受行进中的人,适应他们,并在谈话故事中玩耍。 然而,GPT-3的实践实验表明,这些现代NLP系统经常出现问题,即他们可以在叙事中“卡住 ”, 以便进一步的对话、 即时处决或命令变得徒劳无益。 这里被称为“ 问题中的Locked”, 并用实验案例报告为范例, 随之而来的是与此问题相关的实际和社会问题。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Independence testing in high dimensions
Arxiv
0+阅读 · 2022年10月31日
Arxiv
0+阅读 · 2022年10月22日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员