Training deep neural networks requires large scale data, which often forces users to work in a distributed or outsourced setting, accompanied with privacy concerns. Split learning framework aims to address this concern by splitting up the model among the client and the server. The idea is that since the server does not have access to client's part of the model, the scheme supposedly provides privacy. We show that this is not true via two novel attacks. (1) We show that an honest-but-curious split learning server, equipped only with the knowledge of the client neural network architecture, can recover the input samples and also obtain a functionally similar model to the client model, without the client being able to detect the attack. (2) Furthermore, we show that if split learning is used naively to protect the training labels, the honest-but-curious server can infer the labels with perfect accuracy. We test our attacks using three benchmark datasets and investigate various properties of the overall system that affect the attacks' effectiveness. Our results show that plaintext split learning paradigm can pose serious security risks and provide no more than a false sense of security.


翻译:培训深层神经网络需要大规模的数据,这些数据往往迫使用户在分布式或外包环境下工作,并伴有隐私问题。分解学习框架旨在通过将模型在客户和服务器之间分离来解决这一关切。想法是,由于服务器无法接触模型的客户部分,因此这个办法据称可以提供隐私。我们通过两次新的袭击表明,这并非事实。 (1) 我们显示,一个只配备客户神经网络结构知识的诚实但充满争议的分解学习服务器,可以回收输入样本,并获得与客户模式功能相似的模式,客户无法检测袭击。 (2) 此外,我们表明,如果将分解学习用于保护培训标签是天真的,诚实但有说服力的服务器可以完全准确地推断标签。我们用三个基准数据集测试我们的攻击,并调查影响袭击有效性的整个系统的各种特性。我们的结果显示,简洁的分解学习模式可以造成严重的安全风险,只能提供虚假的安全感。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
85+阅读 · 2021年10月11日
专知会员服务
40+阅读 · 2021年5月6日
【AAAI2021】知识迁移的机器学习成员隐私保护,57页ppt
专知会员服务
27+阅读 · 2021年2月9日
小米在预训练模型的探索与优化
专知会员服务
18+阅读 · 2020年12月31日
专知会员服务
44+阅读 · 2020年10月31日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年11月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
2+阅读 · 2021年10月15日
Arxiv
12+阅读 · 2020年12月10日
Does Data Augmentation Benefit from Split BatchNorms
Arxiv
3+阅读 · 2020年10月15日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
专知会员服务
85+阅读 · 2021年10月11日
专知会员服务
40+阅读 · 2021年5月6日
【AAAI2021】知识迁移的机器学习成员隐私保护,57页ppt
专知会员服务
27+阅读 · 2021年2月9日
小米在预训练模型的探索与优化
专知会员服务
18+阅读 · 2020年12月31日
专知会员服务
44+阅读 · 2020年10月31日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员