A subset of machine learning research intersects with societal issues, including fairness, accountability and transparency, as well as the use of machine learning for social good. In this work, we analyze the scholars contributing to this research at the intersection of machine learning and society through the lens of the sociology of science. By analyzing the authorship of all machine learning papers posted to arXiv, we show that compared to researchers from overrepresented backgrounds (defined by gender and race/ethnicity), researchers from underrepresented backgrounds are more likely to conduct research at this intersection than other kinds of machine learning research. This state of affairs leads to contention between two perspectives on insiders and outsiders in the scientific enterprise: outsiders being those outside the group being studied, and outsiders being those who have not participated as researchers in an area historically. This contention manifests as an epistemic question on the validity of knowledge derived from lived experience in machine learning research, and predicts boundary work that we see in a real-world example.


翻译:一系列机器学习研究与社会问题交织在一起,包括公平、问责制和透明度,以及利用机器学习促进社会福利。在这项工作中,我们通过科学的社会学透镜分析在机器学习和社会交汇处为这项研究作出贡献的学者。通过分析向ArXiv张贴的所有机器学习论文的作者,我们表明,与来自代表比例过高背景(由性别和种族/族裔定义)的研究人员相比,代表性不足背景的研究人员比其他类型的机器学习研究更可能在这个交叉处进行研究。这种事态导致科学企业内部人和外部人两种观点之间的争论:外部人是被研究的群体以外的人,外部人是那些没有作为历史领域的研究人员参与的人。这一争论表明,从机器学习研究的活生生经验中获取的知识的有效性是一个教义问题,并预测我们在现实世界中看到的界限工作。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
118+阅读 · 2019年12月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
7+阅读 · 2020年9月17日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
118+阅读 · 2019年12月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员