Developers of computer vision algorithms outsource some of the labor involved in annotating training data through business process outsourcing companies and crowdsourcing platforms. Many data annotators are situated in the Global South and are considered independent contractors. This paper focuses on the experiences of Argentinian and Venezuelan annotation workers. Through qualitative methods, we explore the discourses encoded in the task instructions that these workers follow to annotate computer vision datasets. Our preliminary findings indicate that annotation instructions reflect worldviews imposed on workers and, through their labor, on datasets. Moreover, we observe that for-profit goals drive task instructions and that managers and algorithms make sure annotations are done according to requesters' commands. This configuration presents a form of commodified labor that perpetuates power asymmetries while reinforcing social inequalities and is compelled to reproduce them into datasets and, subsequently, in computer vision systems.


翻译:计算机视觉算法的开发者通过商业过程外包公司和众包平台将参与说明培训数据的一些劳动力外包出去。 许多数据批注员位于全球南部,被视为独立承包商。 本文侧重于阿根廷和委内瑞拉批注工作者的经验。 我们通过定性方法,探索这些工人在任务指示中遵循的计算机视觉数据集说明中包含的论述。 我们的初步调查结果表明,批注指示反映了对工人强加给他们的世界观,并通过他们的劳动对数据集强加给工人的世界观。 此外,我们观察到,为盈利目的而制定的任务指示,以及管理人员和算法确保根据请求者的命令作出说明。 这种配置呈现一种混合劳动形式,使权力永久保持不对称,同时强化社会不平等,并被迫将其复制到数据集中,并随后在计算机视觉系统中复制。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】计算机领域国际会议截稿信息
Call4Papers
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员