Many pre-trained large-scale models provided online have become highly effective in transferring to downstream tasks. At the same time, various task-specific models fine-tuned on these pre-trained models are available online for public use. In practice, as collecting task-specific data is labor-intensive and fine-tuning the large pre-trained models is computationally expensive, one can reuse task-specific finetuned models to deal with downstream tasks. However, using a model per task causes a heavy burden on storage and serving. Recently, many training-free and parameter-efficient methods have been proposed for reusing multiple fine-tuned task-specific models into a single multi-task model. However, these methods exhibit a large accuracy gap compared with using a fine-tuned model per task. In this paper, we propose Parameter-Efficient methods for ReUsing (PERU) fine-tuned models. For reusing Fully Fine-Tuned (FFT) models, we propose PERU-FFT by injecting a sparse task vector into a merged model by magnitude pruning. For reusing LoRA fine-tuned models, we propose PERU-LoRA use a lower-rank matrix to approximate the LoRA matrix by singular value decomposition. Both PERUFFT and PERU-LoRA are training-free. Extensive experiments conducted on computer vision and natural language process tasks demonstrate the effectiveness and parameter-efficiency of the proposed methods. The proposed PERU-FFT and PERU-LoRA outperform existing reusing model methods by a large margin and achieve comparable performance to using a fine-tuned model per task.
翻译:暂无翻译