Efficient inference is often possible in a streaming context using Rao-Blackwellized particle filters (RBPFs), which exactly solve inference problems when possible and fall back on sampling approximations when necessary. While RBPFs can be implemented by hand to provide efficient inference, the goal of streaming probabilistic programming is to automatically generate such efficient inference implementations given input probabilistic programs. In this work, we propose semi-symbolic inference, a technique for executing probabilistic programs using a runtime inference system that automatically implements Rao-Blackwellized particle filtering. To perform exact and approximate inference together, the semi-symbolic inference system manipulates symbolic distributions to perform exact inference when possible and falls back on approximate sampling when necessary. This approach enables the system to implement the same RBPF a developer would write by hand. To ensure this, we identify closed families of distributions -- such as linear-Gaussian and finite discrete models -- on which the inference system guarantees exact inference. We have implemented the runtime inference system in the ProbZelus streaming probabilistic programming language. Despite an average $1.6\times$ slowdown compared to the state of the art on existing benchmarks, our evaluation shows that speedups of $3\times$-$87\times$ are obtainable on a new set of challenging benchmarks we have designed to exploit closed families.


翻译:在使用Rao-Blackwellization 粒子过滤器(RBPFs)的流流环境中,往往可以有效推断,这种过滤系统尽可能地解决推论问题,必要时又退缩到抽样近似点上。虽然RBPFs可以通过手工执行,以便提供有效的推论,但流动概率编程的目标是自动产生这种有效的推论执行,给输入概率程序提供相应的预测性程序。在这项工作中,我们建议采用半共振推论法,一种使用运行时间推论系统执行预测性程序的技术,自动地实施Rao-Blackwewellized 粒子过滤法。为了同时进行精确和大致的推论,半正正感推论推论系统可以操纵象征性分布,以便在可能时进行精确的推论,而必要时又退缩到大约的取样。这种方法使系统能够执行同样的RBPFPFPS的开发器手写。为了确保这一点,我们发现了一种封闭的分布式家庭,例如线-Gassusian-Gassian 和一定的离式分式模型,在这个系统上保证了准确的推算。我们所设计的精确的精确的精确度基准,我们用了比Zreval-lades-lades-lades-lades-lades-lades-lades-lades-lades-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-s-s-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-lad-s-laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx-s-s-s-s-s-s-s-s-s-s-lad-lax-lad-lad-s-s-s-s-s-s-s-lad-s-lad-s-lax-laxxxx-lax-lax-lax-lax-

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月30日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员