Continuous monitoring of blood pressure (BP) and hemodynamic parameters such as peripheral resistance (R) and arterial compliance (C) are critical for early vascular dysfunction detection. While photoplethysmography (PPG) wearables has gained popularity, existing data-driven methods for BP estimation lack interpretability. We advanced our previously proposed physiology-centered hybrid AI method-Physiological Model-Based Neural Network (PMB-NN)-in blood pressure estimation, that unifies deep learning with a 2-element Windkessel based model parameterized by R and C acting as physics constraints. The PMB-NN model was trained in a subject-specific manner using PPG-derived timing features, while demographic information was used to infer an intermediate variable: cardiac output. We validated the model on 10 healthy adults performing static and cycling activities across two days for model's day-to-day robustness, benchmarked against deep learning (DL) models (FCNN, CNN-LSTM, Transformer) and standalone Windkessel based physiological model (PM). Validation was conducted on three perspectives: accuracy, interpretability and plausibility. PMB-NN achieved systolic BP accuracy (MAE: 7.2 mmHg) comparable to DL benchmarks, diastolic performance (MAE: 3.9 mmHg) lower than DL models. However, PMB-NN exhibited higher physiological plausibility than both DL baselines and PM, suggesting that the hybrid architecture unifies and enhances the respective merits of physiological principles and data-driven techniques. Beyond BP, PMB-NN identified R (ME: 0.15 mmHg$\cdot$s/ml) and C (ME: -0.35 ml/mmHg) during training with accuracy similar to PM, demonstrating that the embedded physiological constraints confer interpretability to the hybrid AI framework. These results position PMB-NN as a balanced, physiologically grounded alternative to purely data-driven approaches for daily hemodynamic monitoring.


翻译:连续监测血压(BP)及外周阻力(R)和动脉顺应性(C)等血流动力学参数对于早期血管功能障碍检测至关重要。尽管光电容积脉搏波描记法(PPG)可穿戴设备日益普及,但现有基于数据驱动的血压估计方法缺乏可解释性。我们在血压估计领域推进了先前提出的生理学中心混合人工智能方法——基于生理模型的神经网络(PMB-NN),该方法将深度学习与以R和C作为物理约束参数化的二元素Windkessel模型相统一。PMB-NN模型采用受试者特异性训练方式,利用PPG衍生的时序特征,同时结合人口统计学信息推断中间变量:心输出量。我们在10名健康成年人进行静态和骑行活动的两天数据上验证了模型的日间鲁棒性,并以深度学习模型(FCNN、CNN-LSTM、Transformer)和独立Windkessel生理模型(PM)作为基准。验证从三个维度展开:准确性、可解释性和生理合理性。PMB-NN的收缩压准确性(MAE:7.2 mmHg)与深度学习基准相当,舒张压性能(MAE:3.9 mmHg)优于深度学习模型。值得注意的是,PMB-NN展现出比深度学习基准和PM更高的生理合理性,表明该混合架构能统一并增强生理学原理与数据驱动技术各自的优势。除血压外,PMB-NN在训练中识别出R(ME:0.15 mmHg·s/ml)和C(ME:-0.35 ml/mmHg),其准确性与PM相似,证明嵌入的生理约束为混合人工智能框架赋予了可解释性。这些结果表明,PMB-NN可作为纯数据驱动方法的平衡且生理学基础扎实的替代方案,适用于日常血流动力学监测。

0
下载
关闭预览

相关内容

国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员