We propose a method to interactively control the animation of fluid elements in still images to generate cinemagraphs. Specifically, we focus on the animation of fluid elements like water, smoke, fire, which have the properties of repeating textures and continuous fluid motion. Taking inspiration from prior works, we represent the motion of such fluid elements in the image in the form of a constant 2D optical flow map. To this end, we allow the user to provide any number of arrow directions and their associated speeds along with a mask of the regions the user wants to animate. The user-provided input arrow directions, their corresponding speed values, and the mask are then converted into a dense flow map representing a constant optical flow map (FD). We observe that FD, obtained using simple exponential operations can closely approximate the plausible motion of elements in the image. We further refine computed dense optical flow map FD using a generative-adversarial network (GAN) to obtain a more realistic flow map. We devise a novel UNet based architecture to autoregressively generate future frames using the refined optical flow map by forward-warping the input image features at different resolutions. We conduct extensive experiments on a publicly available dataset and show that our method is superior to the baselines in terms of qualitative and quantitative metrics. In addition, we show the qualitative animations of the objects in directions that did not exist in the training set and provide a way to synthesize videos that otherwise would not exist in the real world.
翻译:我们建议一种方法来交互控制静态图像中的流体元素动画,以生成电影。 具体地说, 我们注重水、 烟、 火等流体元素动画, 具有重复质质和连续流体运动的特性。 我们从先前的作品中灵感, 以恒定 2D 光学流图的形式在图像中代表流体元素的动画。 为此, 我们允许用户提供任何数量的箭头方向及其相关速度, 并附上用户想要动画的区域面具。 用户提供的输入箭头方向、 其相应速度值和遮罩随后被转换成一个密集流图, 以代表恒定的光流图( FD ) 。 我们观察到, 使用简单的指数化操作获得的FD能够密切接近图像中元素的貌似运动运动。 我们用一个更精确的光质流图( GAN ) 来进一步改进计算精密的光质流图。 我们设计了一个新的UNet 结构, 以自动生成未来框架, 使用精细的光学流图, 将输入不同分辨率流图的输入分辨率流体图( FD ) 。 我们用一个更精确的模型进行广泛的实验,, 而不是用一个可公开的定性的定性的基的图像 向, 向显示我们现有的定性的定量的定量的定量图 。