In the field of gas pipeline location, existing pipeline location methods mostly rely on pipeline location instruments. However, when faced with complex and curved pipeline scenarios, these methods often fail due to problems such as cable entanglement and insufficient equipment flexibility. To address this pain point, we designed a self-propelled pipeline robot. This robot can autonomously complete the location work of complex and curved pipelines in complex pipe networks without external dragging. In terms of pipeline mapping technology, traditional visual mapping and laser mapping methods are easily affected by lighting conditions and insufficient features in the confined space of pipelines, resulting in mapping drift and divergence problems. In contrast, the pipeline location method that integrates inertial navigation and wheel odometers is less affected by pipeline environmental factors. Based on this, this paper proposes a pipeline robot location method based on extended Kalman filtering (EKF). Firstly, the body attitude angle is initially obtained through an inertial measurement unit (IMU). Then, the extended Kalman filtering algorithm is used to improve the accuracy of attitude angle estimation. Finally, high-precision pipeline location is achieved by combining wheel odometers. During the testing phase, the roll wheels of the pipeline robot needed to fit tightly against the pipe wall to reduce slippage. However, excessive tightness would reduce the flexibility of motion control due to excessive friction. Therefore, a balance needed to be struck between the robot's motion capability and positioning accuracy. Experiments were conducted using the self-propelled pipeline robot in a rectangular loop pipeline, and the results verified the effectiveness of the proposed dead reckoning algorithm.


翻译:在燃气管道定位领域,现有管道定位方法多依赖于管道定位仪器。然而,面对复杂弯曲的管道场景时,这些方法常因线缆缠绕、设备灵活性不足等问题而失效。针对这一痛点,我们设计了一种自走式管道机器人。该机器人无需外部拖拽,即可自主完成复杂管网中弯曲复杂管道的定位工作。在管道建图技术方面,传统的视觉建图与激光建图方法在管道密闭空间中易受光照条件与特征不足的影响,导致建图漂移与发散问题。相比之下,融合惯性导航与轮式里程计的管道定位方法受管道环境因素影响较小。基于此,本文提出一种基于扩展卡尔曼滤波(EKF)的管道机器人定位方法。首先通过惯性测量单元(IMU)初步获取机体姿态角,随后利用扩展卡尔曼滤波算法提升姿态角估计精度,最终结合轮式里程计实现高精度管道定位。在测试阶段,管道机器人的滚轮需紧贴管壁以减少滑移,但过紧的贴合会因摩擦过大而降低运动控制的灵活性。因此,需在机器人运动能力与定位精度之间取得平衡。通过在矩形循环管道中使用自走式管道机器人进行实验,结果验证了所提航位推算算法的有效性。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
无人机系统控制研究综述
专知会员服务
41+阅读 · 2024年11月26日
地下空间无人系统研究综述
专知会员服务
38+阅读 · 2024年10月22日
无人自主系统分布式协同控制研究综述
专知会员服务
33+阅读 · 2024年8月26日
微型软体机器人能源驱动技术研究进展
专知会员服务
20+阅读 · 2023年7月12日
轨道病害视觉检测:背景、方法与趋势
专知会员服务
25+阅读 · 2021年2月15日
红外弱小目标处理研究获进展
中科院之声
18+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
无人机系统控制研究综述
专知会员服务
41+阅读 · 2024年11月26日
地下空间无人系统研究综述
专知会员服务
38+阅读 · 2024年10月22日
无人自主系统分布式协同控制研究综述
专知会员服务
33+阅读 · 2024年8月26日
微型软体机器人能源驱动技术研究进展
专知会员服务
20+阅读 · 2023年7月12日
轨道病害视觉检测:背景、方法与趋势
专知会员服务
25+阅读 · 2021年2月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员