This paper presents a novel safe control framework that integrates Sliding Mode Control (SMC), High-Order Control Barrier Functions (HOCBFs) with state-dependent adaptiveness and a lightweight projection for collision-free navigation of an over-actuated 3-DOF marine surface vessel subjected to strong environmental disturbances (wind, waves, and current). SMC provides robustness to matched disturbances common in marine operations, while HOCBFs enforce forward invariance of obstacle-avoidance constraints. A fast half-space projection method adjusts the SMC control only when needed, preserving robustness and minimizing chattering. The approach is evaluated on a nonlinear marine platform model that includes added mass, hydrodynamic damping, and full thruster allocation. Simulation results show robust navigation, guaranteed obstacle avoidance, and computational efficiency suitable for real-time embedded use. For small marine robots and surface vessels with limited onboard computational resources-where execution speed and computational efficiency are critical-the SMC-HOCBF framework constitutes a strong candidate for safety-critical control.
翻译:本文提出了一种新颖的安全控制框架,该框架集成了滑模控制、具有状态自适应性的高阶控制屏障函数以及轻量级投影方法,用于在强环境扰动(风、浪、流)下实现过驱动三自由度海洋水面船舶的无碰撞导航。滑模控制为海洋作业中常见的匹配扰动提供了鲁棒性,而高阶控制屏障函数则强制执行避障约束的前向不变性。一种快速的半空间投影方法仅在需要时调整滑模控制,从而保持鲁棒性并最小化抖振。该方法在一个包含附加质量、流体动力阻尼和完整推力分配的非线性海洋平台模型上进行了评估。仿真结果表明,该框架具有鲁棒的导航性能、有保证的避障能力以及适用于实时嵌入式应用的计算效率。对于机载计算资源有限的小型海洋机器人和水面船舶——其执行速度和计算效率至关重要——该SMC-HOCBF框架是安全关键控制的一个有力候选方案。