Current research in dialogue systems is focused on conversational assistants working on short conversations in either task-oriented or open domain settings. In this paper, we focus on improving task-based conversational assistants online, primarily those working on document-type conversations (e.g., emails) whose contents may or may not be completely related to the assistant's task. We propose "NARLE" a deep reinforcement learning (RL) framework for improving the natural language understanding (NLU) component of dialogue systems online without the need to collect human labels for customer data. The proposed solution associates user emotion with the assistant's action and uses that to improve NLU models using policy gradients. For two intent classification problems, we empirically show that using reinforcement learning to fine tune the pre-trained supervised learning models improves performance up to 43%. Furthermore, we demonstrate the robustness of the method to partial and noisy implicit feedback.


翻译:目前对话系统的研究侧重于在任务导向或开放域设置下进行简短对话的对话助理。在本文中,我们侧重于改进基于任务的在线对话助理,主要是那些在文件类型对话(例如电子邮件)上工作,其内容可能或可能与助理的任务完全相关。我们建议“NARLE”是一个深度强化学习框架,以提高在线对话系统自然语言理解(NLU)部分,而不必为客户数据收集人类标签。拟议解决方案将用户情感与助理的行动联系起来,并利用政策梯度改进NLU模式。对于两个意图分类问题,我们从经验上表明,利用强化学习来调整预先培训的受监督学习模式,可以提高43%的绩效。此外,我们展示了部分和吵闹的隐含反馈方法的稳健性。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
338页新书《Deep Learning in Natural Language Processing》
机器学习算法与Python学习
9+阅读 · 2018年11月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年11月26日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
338页新书《Deep Learning in Natural Language Processing》
机器学习算法与Python学习
9+阅读 · 2018年11月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员