This research explores substitution of the fittest (SF), a technique designed to counteract the problem of disengagement in two-population competitive coevolutionary genetic algorithms. SF is domain-independent and requires no calibration. We first perform a controlled comparative evaluation of SF's ability to maintain engagement and discover optimal solutions in a minimal toy domain. Experimental results demonstrate that SF is able to maintain engagement better than other techniques in the literature. We then address the more complex real-world problem of evolving recommendations for health and well-being. We introduce a coevolutionary extension of EvoRecSys, a previously published evolutionary recommender system. We demonstrate that SF is able to maintain engagement better than other techniques in the literature, and the resultant recommendations using SF are higher quality and more diverse than those produced by EvoRecSys.
翻译:这一研究探索了 " 适者 " (SF)的替代方法,这是一种旨在解决在两种人口竞争性共变遗传算法中脱离问题的技术。SF是独立的领域,不需要校准。我们首先对SF在最小的玩具领域保持接触和找到最佳解决办法的能力进行有控制的比较评价。实验结果表明SF比文献中的其他技术更能保持更好的参与。然后我们处理关于健康和福祉的建议不断演变的更复杂的现实世界问题。我们引入了EvoRecSys的不断演变扩展,这是以前出版的进化建议系统。我们证明SF比文献中的其他技术更能保持参与,而后得出的SF建议质量更高,而且比EvoRecSys产生的建议更加多样化。