As generative models are advancing in quality and quantity for creating synthetic content, deepfakes begin to cause online mistrust. Deepfake detectors are proposed to counter this effect, however, misuse of detectors claiming fake content as real or vice versa further fuels this misinformation problem. We present the first comprehensive uncertainty analysis of deepfake detectors, systematically investigating how generative artifacts influence prediction confidence. As reflected in detectors' responses, deepfake generators also contribute to this uncertainty as their generative residues vary, so we cross the uncertainty analysis of deepfake detectors and generators. Based on our observations, the uncertainty manifold holds enough consistent information to leverage uncertainty for deepfake source detection. Our approach leverages Bayesian Neural Networks and Monte Carlo dropout to quantify both aleatoric and epistemic uncertainties across diverse detector architectures. We evaluate uncertainty on two datasets with nine generators, with four blind and two biological detectors, compare different uncertainty methods, explore region- and pixel-based uncertainty, and conduct ablation studies. We conduct and analyze binary real/fake, multi-class real/fake, source detection, and leave-one-out experiments between the generator/detector combinations to share their generalization capability, model calibration, uncertainty, and robustness against adversarial attacks. We further introduce uncertainty maps that localize prediction confidence at the pixel level, revealing distinct patterns correlated with generator-specific artifacts. Our analysis provides critical insights for deploying reliable deepfake detection systems and establishes uncertainty quantification as a fundamental requirement for trustworthy synthetic media detection.
翻译:随着生成模型在创建合成内容的质量和数量上不断进步,深度伪造开始引发网络信任危机。为应对此问题,研究者提出了深度伪造检测器,然而检测器的误用——将伪造内容判定为真实或反之——进一步加剧了错误信息传播。本文首次对深度伪造检测器进行了全面的不确定性分析,系统研究了生成伪影如何影响预测置信度。从检测器的响应中可见,深度伪造生成器同样贡献了不确定性,因其生成残留物存在差异,因此我们将深度伪造检测器与生成器的不确定性分析进行交叉研究。基于观察结果,不确定性流形蕴含足够一致的信息,可利用不确定性进行深度伪造来源检测。我们的方法采用贝叶斯神经网络和蒙特卡洛丢弃法,量化多种检测器架构中的偶然性和认知不确定性。我们在两个数据集上评估了九种生成器、四种盲检测器和两种生物检测器的不确定性,比较了不同不确定性方法,探索了基于区域和像素的不确定性,并进行了消融实验。我们通过生成器/检测器组合间的二元真伪分类、多类别真伪分类、来源检测及留一法实验,分析其泛化能力、模型校准度、不确定性及对抗攻击鲁棒性。进一步引入了不确定性图谱,在像素级别定位预测置信度,揭示了与生成器特定伪影相关的独特模式。本分析为部署可靠的深度伪造检测系统提供了关键见解,并将不确定性量化确立为可信合成媒体检测的基本要求。