Compared with the progress made on human activity classification, much less success has been achieved on human interaction understanding (HIU). Apart from the latter task is much more challenging, the main cause is that recent approaches learn human interactive relations via shallow graphical representations, which is inadequate to model complicated human interactions. In this paper, we propose a deep logic-aware graph network, which combines the representative ability of graph attention and the rigorousness of logical reasoning to facilitate human interaction understanding. Our network consists of three components, a backbone CNN to extract image features, a graph network to learn interactive relations among participants, and a logic-aware reasoning module. Our key observation is that the first-order logic for HIU can be embedded into higher-order energy functions, minimizing which delivers logic-aware predictions. An efficient mean-field inference algorithm is proposed, such that all modules of our network could be trained jointly in an end-to-end way. Experimental results show that our approach achieves leading performance on three existing benchmarks and a new challenging dataset crafted by ourselves. Code will be publicly available.


翻译:与人类活动分类方面取得的进展相比,在人类互动理解(HIU)方面所取得的成功要少得多。除了后一项任务更具挑战性之外,主要的原因是,最近的方法通过浅色图形显示来学习人类互动关系,这不足以模拟复杂的人类互动。在本文件中,我们提议了一个深层次的逻辑认知图网络,将图示关注的代表性和逻辑推理的严格性结合起来,以促进人类互动理解。我们的网络由三个部分组成,一个主干CNN来提取图像特征,一个用于学习参与者之间互动关系的图形网络和一个逻辑认知推理模块。我们的主要观察是,HIU的第一阶逻辑可以嵌入更高层次的能源功能中,最大限度地减少提供逻辑认知预测。建议一种高效的中位推算法,这样,我们网络的所有模块都可以以端对端方式联合培训。实验结果表明,我们的方法在三个现有基准上取得了领先的业绩,我们自己设计的新的具有挑战性的数据集将公开提供。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
机器学习的可解释性
专知会员服务
176+阅读 · 2020年8月27日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
7+阅读 · 2018年8月21日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员