Nowadays, the PQ flexibility from the distributed energy resources (DERs) in the high voltage (HV) grids plays a more critical and significant role in grid congestion management in TSO grids. This work proposed a multi-stage deep reinforcement learning approach to estimate the PQ flexibility (PQ area) at the TSO-DSO interfaces and identifies the DER PQ setpoints for each operating point in a way, that DERs in the meshed HV grid can be coordinated to offer flexibility for the transmission grid. In the estimation process, we consider the steady-state grid limits and the robustness in the resulting voltage profile against uncertainties and the N-1 security criterion regarding thermal line loading, essential for real-life grid operational planning applications. Using deep reinforcement learning (DRL) for PQ flexibility estimation is the first of its kind. Furthermore, our approach of considering N-1 security criterion for meshed grids and robustness against uncertainty directly in the optimization tasks offers a new perspective besides the common relaxation schema in finding a solution with mathematical optimal power flow (OPF). Finally, significant improvements in the computational efficiency in estimation PQ area are the highlights of the proposed method.
翻译:目前,高电压电网分布式能源资源(DERs)在高电压电网中的PQ灵活性在TESO电网的电网拥堵管理中发挥更加关键和重要的作用,这项工作提议采取多阶段强化学习办法,对TESO-DSO接口的PQ灵活性(PQ区域)作出估计,并确定每个操作点的DERPP定点,对冲压式HV电网中的DERs可加以协调,为传输网提供灵活性。在估算过程中,我们认为,稳定状态电网的极限以及由此产生的电压在应对不确定性和N-1热线装配安全标准方面的稳健性,这是实际生活电网业务规划应用所必不可少的。利用深度加固学习(DRL)来估计PQ灵活性是其类型的第一种方法。此外,我们在优化任务中直接考虑N-1电网网的安全标准和对不确定性的稳健性,除了在寻找数学最佳电流解决方案方面找到解决办法的共同放松型外,还提出了新的视角。最后,拟议的方法突出是,估算PQ区域的计算效率的显著提高。