This paper addresses channel estimation and data equalization on frequency-selective 1-bit quantized Multiple Input-Multiple Output (MIMO) systems. No joint processing or Channel State Information is assumed at the transmitter, and therefore our findings are also applicable to the uplink of Multi-User MIMO systems. System models for both Orthogonal Division Frequency Multiplexing (OFDM) and single-carrier schemes are developed. A Cram\'er-Rao Lower Bound for the estimation problems is derived. The two nonlinear algorithms Expectation Maximization (EM) and Generalized Approximate Message Passing (GAMP) are adapted to the problems, and a linear method based on the Bussgang theorem is proposed. In the OFDM case, the linear method enables subcarrier-wise estimation, greatly reducing computational complexity. Simulations are carried out to compare the algorithms with different settings. The results turn out to be close to the Cram\'er-Rao bound in the low Signal to Noise Ratio (SNR) region. The OFDM setting is more suitable for the nonlinear algorithms, and that the linear methods incur a performance loss with respect to the nonlinear approaches. In the relevant low and medium SNR regions, the loss amounts to 2-3 dB and might well be justified in exchange for the reduced computational effort, especially in Massive MIMO settings.


翻译:本文论述频率选择 1 位数多输入多输出(MIIMO)系统的频道估计和数据均匀性。 发射机不假定联合处理或频道国家信息,因此,我们的调查结果也适用于多用户MIMO系统的上链接。 开发了Orthodal Division 频率多重化(OFDM)和单载机系统的系统模型。 生成了用于估算问题的Cram\'er- Rao 低频值。 两种非线性算法“ 期望最大化” 和“ 通用消息传递( GAMP) ” 都适应了问题, 并提出了基于 Busgang 的线性方法。 在OrdM 案中, 线性方法可以进行亚性估算, 大大降低计算复杂性。 模拟是为了比较不同环境的算法。 结果与Cram\'er-Rao 相近于“ 信号最大化” (EM) 和“ 通用消息传递( GAMMP ) 区域。 在非线性、 不线性成本的M 中, 的计算方法可能与非线性成本损失。

0
下载
关闭预览

相关内容

【Manning新书】现代Java实战,592页pdf
专知会员服务
98+阅读 · 2020年5月22日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
已删除
将门创投
4+阅读 · 2017年12月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
已删除
将门创投
4+阅读 · 2017年12月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员