We develop a deep variational free energy framework to compute the equation of state of hydrogen in the warm dense matter region. This method parameterizes the variational density matrix of hydrogen nuclei and electrons at finite temperature using three deep generative models: a normalizing flow model for the Boltzmann distribution of the classical nuclei, an autoregressive transformer for the distribution of electrons in excited states, and a permutational equivariant flow model for the unitary backflow transformation of electron coordinates in Hartree-Fock states. By jointly optimizing the three neural networks to minimize the variational free energy, we obtain the equation of state and related thermodynamic properties of dense hydrogen for the temperature range where electrons occupy excited states. We compare our results with other theoretical and experimental results on the deuterium Hugoniot curve, aiming to resolve existing discrepancies. Our results bridge the gap between the results obtained by path-integral Monte Carlo calculations at high temperature and ground-state electronic methods at low temperature, thus providing a valuable benchmark for hydrogen in the warm dense matter region.
翻译:我们开发了一种深度变分自由能框架,用于计算氢在温稠密物质区域的状态方程。该方法使用三个深度生成模型来参数化有限温度下氢核与电子的变分密度矩阵:一个用于经典核玻尔兹曼分布的正则化流模型,一个用于激发态电子分布的自回归Transformer模型,以及一个用于哈特里-福克态中电子坐标酉反向流变换的置换等变流模型。通过联合优化这三个神经网络以最小化变分自由能,我们获得了电子占据激发态的温度范围内稠密氢的状态方程及相关热力学性质。我们将计算结果与氘雨贡纽曲线的其他理论和实验结果进行了比较,旨在解决现有差异。我们的结果弥合了高温下路径积分蒙特卡罗计算与低温下基态电子方法所得结果之间的差距,从而为温稠密物质区域的氢提供了一个有价值的基准。