Several Open Source Software (OSS) projects depend on the continuity of their development communities to remain sustainable. Understanding how developers become inactive or why they take breaks can help communities prevent abandonment and incentivize developers to come back. In this paper, we propose a novel method to identify developers' inactive periods by analyzing the individual rhythm of contributions to the projects. Using this method, we quantitatively analyze the inactivity of core developers in 18 OSS organizations hosted on GitHub. We also survey core developers to receive their feedback about the identified breaks and transitions. Our results show that our method was effective for identifying developers' breaks. About 94% of the surveyed core developers agreed with our state model of inactivity; 71% and 79% of them acknowledged their breaks and state transition, respectively. We also show that all core developers take breaks (at least once) and about a half of them (~45%}) have completely disengaged from a project for at least one year. We also analyzed the probability of transitions to/from inactivity and found that developers who pause their activity have a ~35-55\% chance to return to an active state; yet, if the break lasts for a year or longer, then the probability of resuming activities drops to ~21-26%, with a ~54% chance of complete disengagement. These results may support the creation of policies and mechanisms to make OSS community managers aware of breaks and potential project abandonment.


翻译:开放源码软件(OSS) 几个项目取决于其开发社区的连续性, 以保持可持续性。 了解开发者如何变得不活跃或者为什么他们休息会帮助社区防止被抛弃, 激励开发者回来。 在本文中, 我们提出一种新的方法, 通过分析对项目贡献的个体节奏来识别开发者不活跃的时期。 使用这种方法, 我们还从数量上分析 GitHub 所托管的18个开放源码软件组织的核心开发者不活跃的情况。 我们还对核心开发者进行了调查, 以获得关于已查明的中断和过渡的反馈。 我们的结果表明, 我们的活动暂停的开发者有确定开发者休息时间的有效方法。 约94% 接受调查的核心开发者同意我们状态的不活跃模式; 71% 和 79 % 分别承认了他们的中断和状态过渡。 我们还表明, 所有核心开发者都休息( 至少一次) 和大约一半 (~45 ⁇ ) 的开发者至少一年完全脱离一个项目。 我们还分析了从不活跃的过渡到不活跃的概率, 并且发现, 暂停其活动的开发者有机会返回一个积极的状态; 但是, 可能恢复最后一个或更可能恢复一个项目的周期。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月28日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
19+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员