Cryptographic protocols are often implemented at upper layers of communication networks, while error-correcting codes are employed at the physical layer. In this paper, we consider utilizing readily-available physical layer functions, such as encoders and decoders, together with shared keys to provide a threshold-type security scheme. To this end, we first consider a scenario where the effect of the physical layer is omitted and all the channels between the involved parties are assumed to be noiseless. We introduce a model for threshold-secure coding, where the legitimate parties communicate using a shared key such that an eavesdropper does not get any information, in an information-theoretic sense, about the key as well as about any subset of the input symbols of size up to a certain threshold. Then, a framework is provided for constructing threshold-secure codes from linear block codes while characterizing the requirements to satisfy the reliability and security conditions. Moreover, we propose a threshold-secure coding scheme, based on Reed-Muller (RM) codes, that meets security and reliability conditions. It is shown that the encoder and the decoder of the scheme can be implemented efficiently with quasi-linear time complexity. In particular, a successive cancellation decoder is shown for the RM-based coding scheme. Then we extend the setup to the scenario where the channel between the legitimate parties is no longer noiseless. The reliability condition for noisy channels is then modified accordingly, and a method is described to construct codes attaining threshold security as well as desired reliability. Also, we propose a coding scheme based on RM codes for threshold security and robustness designed for binary erasure channels along with a unified successive cancellation decoder. The proposed threshold-secure coding schemes are flexible and can be adapted for different key lengths.


翻译:加密协议通常在通信网络的上层实施, 而在物理层则使用错误校正代码。 在本文中, 我们考虑使用容易获得的物理层功能, 如编码器和解码器, 以及共享密钥, 以提供阈值类型的安全计划。 为此, 我们首先考虑一个省略物理层影响的情景, 并假设所涉各方之间的所有渠道都是无噪音的。 我们引入了一个阈值安全编码模式, 合法各方使用共享密钥进行沟通, 从而使窃听器在信息理论意义上得不到任何关于关键值的信息, 以及可靠度达到某个阈值的任何一组输入符号, 例如编码编码和编码。 然后, 提供一个框架, 从线性块代码中构建阈值安全代码, 同时描述满足可靠性和安全条件的要求。 此外, 我们提出一个基于Reed- Muller( RM) 代码的阈值安全性和可靠性标准, 从而满足安全和可靠性条件。 显示, 系统编码的编码和解析器的解码系统, 能够以直径安全性规则的精度和解的精度规则 。 快速地显示, 运行规则的精度的精度规则的精度规则的精度规则可以被扩展到我们的精度的精度的精度的精度的精度, 的精度的精度的精度的精度, 。 。 的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
4+阅读 · 2019年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月10日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员