Large language models (LLMs) show impressive abilities via few-shot prompting. Commercialized APIs such as OpenAI GPT-3 further increase their use in real-world language applications. However, existing research focuses on models' accuracy on standard benchmarks and largely ignores their reliability, which is crucial for avoiding catastrophic real-world harms. While reliability is a broad and vaguely defined term, this work decomposes reliability into four facets: generalizability, fairness, calibration, and factuality. We establish simple and effective prompts to demonstrate GPT-3's reliability in these four aspects: 1) generalize out-of-domain, 2) balance demographic distribution to reduce social biases, 3) calibrate language model probabilities, and 4) update the LLM's knowledge. We find that by employing appropriate prompts, GPT-3 outperforms smaller-scale supervised models by large margins on all these facets. We release all processed datasets, evaluation scripts, and model predictions to facilitate future analysis. Our findings not only shed new insights on the reliability of prompting LLMs, but more importantly, our prompting strategies can help practitioners more reliably use large language models like GPT-3.
翻译:大型语言模型(LLMS)通过微小的提示显示了令人印象深刻的能力。商业化的API,如OpenAI GPT-3,进一步增加了其在现实世界语言应用中的使用。但是,现有的研究侧重于模型标准基准的准确性,并在很大程度上忽视了可靠性,这对于避免灾难性现实世界的伤害至关重要。可靠性是一个广泛和模糊的术语,但这项工作将可靠性分解为四个方面:普遍性、公平性、校准性和事实质量。我们建立了简单有效的提示,以展示GPT-3在这四个方面的可靠性:1)一般化的外在,2)平衡人口分布以减少社会偏见,3)校准语言模型的概率,4)更新LLM的知识。我们发现,通过使用适当的提示,GPT-3超越了在所有这些方面的大边距上的小规模监督模型。我们发布了所有经过处理的数据集、评价脚本和模型预测,以便利今后的分析。我们的调查结果不仅对加速LMMS的可靠性提出了新的见解,而且更重要的是,我们的迅速战略可以帮助从业人员更可靠地使用GPT-3的大型语言。