Event data are increasingly common in applied political science research. While these data are inherently locational, political scientists predominately analyze aggregate summaries of these events as areal data. In so doing, they lose much of the information inherent to these point pattern data, and much of the flexibility that comes analyzing events using point process models. Recognizing these advantages, applied statisticians have increasingly utilized point process models in the analysis of political events. Yet, this work often neglects inherent limitations of political event data (e.g, geolocation accuracy), which can complicate the direct application of point process models. In this paper, we attempt to bridge this divide: introducing the benefits of point process modeling for political science research, and highlighting the unique challenges political science data pose for these approaches. To ground our discussion, we focus the Global Terrorism Database, using a univariate and bivariate log-Gaussian Cox process model (LGCP) to analyze terror attacks in Nigeria during 2014.
翻译:在应用政治科学研究中,事件数据越来越常见。这些数据本质上是位置性的,而政治科学家则主要分析这些事件的汇总汇总数据,如区域数据。在这样做的过程中,他们损失了这些点模式数据所固有的大量信息,并损失了使用点进程模型分析事件的大部分灵活性。认识到这些优势,应用统计人员在分析政治事件时越来越多地使用点进程模型。然而,这项工作往往忽视了政治事件数据的内在局限性(如地理定位精确度),这可能会使点进程模型的直接应用复杂化。在本文中,我们试图弥合这一鸿沟:引入政治科学研究点进程模型的好处,并突出政治科学数据对这些方法构成的独特挑战。为了讨论的基础,我们集中全球恐怖主义数据库,使用单词和双数日对地对地对地的考克斯进程模型(LGCP)来分析2014年期间尼日利亚的恐怖袭击。