In this paper, we introduce the Ensemble Kalman-Stein Gradient Descent (EnKSGD) class of algorithms. The EnKSGD class of algorithms builds on the ensemble Kalman filter (EnKF) line of work, applying techniques from sequential data assimilation to unconstrained optimization and parameter estimation problems. The essential idea is to exploit the EnKF as a black box (i.e. derivative-free, zeroth order) optimization tool if iterated to convergence. In this paper, we return to the foundations of the EnKF as a sequential data assimilation technique, including its continuous-time and mean-field limits, with the goal of developing faster optimization algorithms suited to noisy black box optimization and inverse problems. The resulting EnKSGD class of algorithms can be designed to both maintain the desirable property of affine-invariance, and employ the well-known backtracking line search. Furthermore, EnKSGD algorithms are designed to not necessitate the subspace restriction property and variance collapse property of previous iterated EnKF approaches to optimization, as both these properties can be undesirable in an optimization context. EnKSGD also generalizes beyond the $L^{2}$ loss, and is thus applicable to a wider class of problems than the standard EnKF. Numerical experiments with both linear and nonlinear least squares problems, as well as maximum likelihood estimation, demonstrate the faster convergence of EnKSGD relative to alternative EnKF approaches to optimization.


翻译:在本文中,我们介绍了Ensemble Kalman-Stein梯度下降(EnKSGD)算法类。EnKSGD算法类建立在集合卡尔曼过滤(EnKF)的工作基础之上,将连续数据同化的技术应用于无约束优化和参数估计问题。其基本思想是,通过将EnKF作为黑盒(即无导数,零阶)优化工具迭代到收敛,从而利用它。在本文中,我们回到将EnKF作为序列数据同化技术的基础,包括其连续时间和均值场极限,目的是开发适用于噪声黑盒优化和反演问题的更快优化算法。所得到的EnKSGD算法类可以被设计成既保持所需的仿射同变性质,同时还可以采用众所周知的回溯直线搜索。此外,EnKSGD算法的设计不需要以前的迭代EnKF优化方法所需的子空间限制特性和方差崩溃特性,因为在优化环境中这两个特性都可能是不必要的。EnKSGD还可推广到$L^{2}$损失之外,因此适用于比标准EnKF更广泛的问题类。对于线性和非线性最小二乘问题以及最大似然估计,数值实验证明了相对于替代的EnKF优化方法,EnKSGD的更快收敛性。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
50+阅读 · 2020年12月14日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最全机器学习优化器Optimizer汇总
极市平台
0+阅读 · 2022年10月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
VIP会员
相关资讯
最全机器学习优化器Optimizer汇总
极市平台
0+阅读 · 2022年10月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员