The emergence of multiple sensory devices on or near a human body is uncovering new dynamics of extreme edge computing. In this, a powerful and resource-rich edge device such as a smartphone or a Wi-Fi gateway is transformed into a personal edge, collaborating with multiple devices to offer remarkable sensory al eapplications, while harnessing the power of locality, availability, and proximity. Naturally, this transformation pushes us to rethink how to construct accurate, robust, and efficient sensory systems at personal edge. For instance, how do we build a reliable activity tracker with multiple on-body IMU-equipped devices? While the accuracy of sensing models is improving, their runtime performance still suffers, especially under this emerging multi-device, personal edge environments. Two prime caveats that impact their performance are device and data variabilities, contributed by several runtime factors, including device availability, data quality, and device placement. To this end, we present SensiX, a personal edge platform that stays between sensor data and sensing models, and ensures best-effort inference under any condition while coping with device and data variabilities without demanding model engineering. SensiX externalises model execution away from applications, and comprises of two essential functions, a translation operator for principled mapping of device-to-device data and a quality-aware selection operator to systematically choose the right execution path as a function of model accuracy. We report the design and implementation of SensiX and demonstrate its efficacy in developing motion and audio-based multi-device sensing systems. Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.


翻译:人类身体上或附近的多个感官装置的出现正在揭示极端边缘计算的新动态。在此过程中,一个强大且资源丰富的边缘装置,如智能手机或无线网关,被转化成个人边缘,与多个装置合作,提供显著感官艾应用程序,同时利用地点、可用性和近距离的力量。自然,这种转变促使我们重新思考如何在个人边缘建立准确、稳健和高效的感官系统。例如,我们如何用机体上安装多功能IMU设备来建立可靠的活动跟踪器?尽管感测模型的准确性正在提高,但其运行时间性能仍然受到影响,特别是在这种新出现的多功能、个人边缘环境中。两个主要警告,影响其性能的装置和数据变异性,由设备可用性能、数据质量和装置放置等几个运行时间因素促成。为此,我们提出了SensermexX,一个在传感器数据和感应感测模型模型和机体设备设备设备安装中,在任何条件下确保最精确的推度,同时应对设备和数据变异性,特别是在这个新出现的多功能下,在不要求的多功能下,Sral-dededeal-deal-deal-deal-deal-deal-deal-deal dection-dection-dection-dection-laction-dection-dection-dection-dection-dection-dection a a a a a rout stra a routal dection a routal detraction a laction a rout straction a str dection-toment slafttrafttrafttrafttrafttraction-toction-toction-traction-toction-toction-traction-toction-toction-s-s a laft str-s-s-toction-toctional-tractional-traction-traction-tra actional-tra actional-toctional-toction-toction-traction-toction-toction-toctional-toction-s-s-s-toutdal-toction-s-s-s-s-s-sal-s-s-s a laction-s a laction-sal-to a a a laction-s a laction-to

0
下载
关闭预览

相关内容

移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
0+阅读 · 2021年2月17日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
相关资讯
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
相关论文
Arxiv
0+阅读 · 2021年2月17日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Top
微信扫码咨询专知VIP会员