Several works have shown linear speedup is achieved by an asynchronous parallel implementation of stochastic coordinate descent so long as there is not too much parallelism. More specifically, it is known that if all updates are of similar duration, then linear speedup is possible with up to $\Theta(\sqrt n L_{\max}/L_{\overline{\mathrm{res}}})$ processors, where $L_{\max}$ and $L_{\overline{\mathrm{res}}}$ are suitable Lipschitz parameters. This paper shows the bound is tight for almost all possible values of these parameters.
翻译:一些工程显示,只要没有太多的平行点,通过不同步平行地平行地执行随机坐标下行可以实现线性加速。 更具体地说,已知,如果所有更新都持续了相似的时间,那么可以实现线性加速,最多可达$\Theta(\sqrt nL ⁇ max}/L ⁇ _overline_mathrm{res ⁇ )的处理器,其中${max}$和$ ⁇ overline_mathrm{res}$是适合Libschitz参数的。本文显示,这些参数几乎所有可能的值的界限都很紧。