Several works have shown linear speedup is achieved by an asynchronous parallel implementation of stochastic coordinate descent so long as there is not too much parallelism. More specifically, it is known that if all updates are of similar duration, then linear speedup is possible with up to $\Theta(\sqrt n L_{\max}/L_{\overline{\mathrm{res}}})$ processors, where $L_{\max}$ and $L_{\overline{\mathrm{res}}}$ are suitable Lipschitz parameters. This paper shows the bound is tight for almost all possible values of these parameters.


翻译:一些工程显示,只要没有太多的平行点,通过不同步平行地平行地执行随机坐标下行可以实现线性加速。 更具体地说,已知,如果所有更新都持续了相似的时间,那么可以实现线性加速,最多可达$\Theta(\sqrt nL ⁇ max}/L ⁇ _overline_mathrm{res ⁇ )的处理器,其中${max}$和$ ⁇ overline_mathrm{res}$是适合Libschitz参数的。本文显示,这些参数几乎所有可能的值的界限都很紧。

0
下载
关闭预览

相关内容

坐标下降法(coordinate descent)是一种非梯度优化算法。算法在每次迭代中,在当前点处沿一个坐标方向进行一维搜索以求得一个函数的局部极小值。在整个过程中循环使用不同的坐标方向。对于不可拆分的函数而言,算法可能无法在较小的迭代步数中求得最优解。为了加速收敛,可以采用一个适当的坐标系,例如通过主成分分析获得一个坐标间尽可能不相互关联的新坐标系.
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
18+阅读 · 2020年9月6日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习线性代数简明教程
论智
11+阅读 · 2018年5月30日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月13日
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习线性代数简明教程
论智
11+阅读 · 2018年5月30日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员