The COVID-19 pandemic has spawned a diverse body of scientific literature that is challenging to navigate, stimulating interest in automated tools to help find useful knowledge. We pursue the construction of a knowledge base (KB) of mechanisms -- a fundamental concept across the sciences encompassing activities, functions and causal relations, ranging from cellular processes to economic impacts. We extract this information from the natural language of scientific papers by developing a broad, unified schema that strikes a balance between relevance and breadth. We annotate a dataset of mechanisms with our schema and train a model to extract mechanism relations from papers. Our experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature, outperforming the prominent PubMed search in a study with clinical experts.
翻译:COVID-19大流行产生了多种科学文献,对导航具有挑战性,激发了人们对自动工具的兴趣,以帮助找到有用的知识。我们致力于构建一个机制的知识库(KB) -- -- 一个涵盖各种活动、功能和因果关系(从细胞过程到经济影响)的整个科学的基本概念。我们从科学论文的自然语言中提取这一信息,方法是开发一个广泛、统一的模型,在相关性和广度之间求得平衡。我们用我们的系统来说明一套机制的数据集,并训练一个模型,从文件中提取机制关系。我们的实验表明,我们的KB在支持对COVID-19文学进行跨学科科学搜索方面非常有用,比临床专家的一项研究中杰出的PubMed搜索表现得还要好。