Traditional approaches to safety event analysis in autonomous systems have relied on complex machine learning models and extensive datasets for high accuracy and reliability. However, the advent of Multimodal Large Language Models (MLLMs) offers a novel approach by integrating textual, visual, and audio modalities, thereby providing automated analyses of driving videos. Our framework leverages the reasoning power of MLLMs, directing their output through context-specific prompts to ensure accurate, reliable, and actionable insights for hazard detection. By incorporating models like Gemini-Pro-Vision 1.5 and Llava, our methodology aims to automate the safety critical events and mitigate common issues such as hallucinations in MLLM outputs. Preliminary results demonstrate the framework's potential in zero-shot learning and accurate scenario analysis, though further validation on larger datasets is necessary. Furthermore, more investigations are required to explore the performance enhancements of the proposed framework through few-shot learning and fine-tuned models. This research underscores the significance of MLLMs in advancing the analysis of the naturalistic driving videos by improving safety-critical event detecting and understanding the interaction with complex environments.
翻译:暂无翻译