Data-driven optimization has found many successful applications in the real world and received increased attention in the field of evolutionary optimization. Most existing algorithms assume that the data used for optimization is always available on a central server for construction of surrogates. This assumption, however, may fail to hold when the data must be collected in a distributed way and is subject to privacy restrictions. This paper aims to propose a federated data-driven evolutionary multi-/many-objective optimization algorithm. To this end, we leverage federated learning for surrogate construction so that multiple clients collaboratively train a radial-basis-function-network as the global surrogate. Then a new federated acquisition function is proposed for the central server to approximate the objective values using the global surrogate and estimate the uncertainty level of the approximated objective values based on the local models. The performance of the proposed algorithm is verified on a series of multi/many-objective benchmark problems by comparing it with two state-of-the-art surrogate-assisted multi-objective evolutionary algorithms.
翻译:数据驱动优化在现实世界中发现许多成功的应用,并在进化优化领域得到越来越多的关注。大多数现有算法假设,用于优化的数据总是在建造代孕者的中央服务器上提供。然而,这一假设可能无法维持,因为数据必须以分布方式收集,并受到隐私限制。本文旨在提出一个由数据驱动的联动进进化多/多个目标优化算法。为此,我们利用联进化学习进行代孕构建,使多个客户合作培训一个作为全球代孕的辐射基体功能网络。然后,提议为中央服务器设置一个新的联进化获取功能,以利用全球代孕仪来估计目标值,并估计根据当地模型估计近似目标值的不确定性水平。拟议算法的性能通过将它与两种最先进的代孕辅助多/多个目标基准算法进行比较,从而根据一系列多/多个目标基准问题加以验证。