Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, traditional FAS methods based on handcrafted features become unreliable due to their limited representation capacity. With the emergence of large-scale academic datasets in the recent decade, deep learning based FAS achieves remarkable performance and dominates this area. However, existing reviews in this field mainly focus on the handcrafted features, which are outdated and uninspiring for the progress of FAS community. In this paper, to stimulate future research, we present the first comprehensive review of recent advances in deep learning based FAS. It covers several novel and insightful components: 1) besides supervision with binary label (e.g., '0' for bonafide vs. '1' for PAs), we also investigate recent methods with pixel-wise supervision (e.g., pseudo depth map); 2) in addition to traditional intra-dataset evaluation, we collect and analyze the latest methods specially designed for domain generalization and open-set FAS; and 3) besides commercial RGB camera, we summarize the deep learning applications under multi-modal (e.g., depth and infrared) or specialized (e.g., light field and flash) sensors. We conclude this survey by emphasizing current open issues and highlighting potential prospects.


翻译:最近,由于在确保面部识别系统不受演示式攻击(PAS)影响方面发挥着至关重要的作用,反脸部最近引起越来越多的关注。随着越来越多的具有新类型新型的PAS在确保面部识别系统方面发挥着至关重要的作用,基于手工艺特征的传统FAS方法由于代表能力有限而变得不可靠。随着最近十年大规模学术数据集的出现,深层次学习FAS取得了显著的成绩,并在这一领域占主导地位。然而,目前这一领域的审查主要侧重于手工艺特征,这些特征已经过时,并且不为FAS社区的进步所吸引。在本文中,为了刺激未来的研究,我们首次全面审查了基于深层次学习FAS的最新进展。它涵盖了几个新颖和深刻的组成部分:1)除了用二进制标签(例如,“O'为Nonfide v. 1'为PAS)的监督之外,我们还通过像素明智的监督(e.g. 假深度地图);2)除了传统的内部数据集评估之外,我们收集和分析了专门设计用于广度和开放式FAS-SAS-S-S-S-M(S-S-G-G-G-G-Simpress Frental Greal Greal)应用的最新方法,以及Rismodress-I-S-I-S-I-S-S-ILV-S-Sial-IL-S-S-S-S-S-S-S-S-S-S-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-I-Slcal-S-Slumst-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-I-S-S-S-S-S-S-S-S-S-I-S-S-S-S-S-S-Slcal 和3)和M-Sl-Si-S-I-I-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
超全的人脸识别数据集汇总,附打包下载
极市平台
90+阅读 · 2020年3月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Arxiv
1+阅读 · 2021年9月1日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
8+阅读 · 2020年10月7日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
53+阅读 · 2018年12月11日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
超全的人脸识别数据集汇总,附打包下载
极市平台
90+阅读 · 2020年3月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
相关论文
Arxiv
1+阅读 · 2021年9月1日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
8+阅读 · 2020年10月7日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
53+阅读 · 2018年12月11日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Top
微信扫码咨询专知VIP会员