Statistical analysis in applied research, across almost every field (e.g., biomedical, economics, computer science, and psychological) makes use of samples upon which the explicit error distribution of the dependent variable is unknown or, at best, difficult to linearly model. Yet, these assumptions are extremely common. Unknown distributions are of course biased when incorrectly specified, compromising the generalisability of our interpretations -- the linearly unbiased Euclidean distance is very difficult to correctly identify upon finite samples and therefore results in an estimator which is neither unbiased nor maximally informative when incorrectly applied. The alternative common solution to the problem however, the use of non-parametric statistics, has its own fundamental flaws. In particular, these flaws revolve around the problem of order-statistics and the estimation in the presence of ties, which often removes the introduction of multiple independent variables and the estimation of interactions. We introduce a competitor to the Euclidean norm, the Kemeny norm, which we prove to be a valid Banach space, and construct a multivariate linear expansion of the Kendall-Theil-Sen estimator, which performs without compromising the parameter space extensibility, and establish its linear maximum likelihood properties. Empirical demonstrations upon both simulated and empirical data shall be used to demonstrate these properties, such that the new estimator is nearly equivalent in power for the glm upon Gaussian data, but grossly superior for a vast array of analytic scenarios, including finite ordinal sum-score analysis, thereby aiding in the resolution of replication in the Applied Sciences.


翻译:应用研究中的统计分析几乎在每一个领域(例如生物医学、经济学、计算机科学和心理学)都使用样本,而从属变量的明显错误分布并不为人所知,或最多是难以进行线性模型。然而,这些假设极为常见。当错误地指定时,未知分布当然有偏差,损害我们解释的可概括性 -- -- 线性不偏颇的欧几里德距离很难在有限的样本中正确辨别,因此在错误地应用时产生一个测量器,既不公正,也没有最充分的信息。然而,问题的替代共同解决办法是使用非参数统计,有其自身的根本缺陷。特别是,这些缺陷围绕秩序统计和在存在联系时的估计问题,往往消除了多种独立变量的引入和对互动的估计。 我们给欧几里德规范引入了一个比较器,即我们证明是有效的巴纳赫空间,并构建一个多变的线性线性扩展,但非参数的使用本身也有其基本缺陷。这些缺陷围绕秩序-统计统计和估算性模型的精确性分析,在使用这些实验性模型的精确性能上,这些实验性数据的精确性将显示其精确性,在模拟性能的精确性能的精确性能的精确性,在模拟的精确性实验性模型中将显示这些实验性能上进行。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
0+阅读 · 2021年4月13日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员