Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models. The framework is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures. Caffe fits industry and internet-scale media needs by CUDA GPU computation, processing over 40 million images a day on a single K40 or Titan GPU ($\approx$ 2.5 ms per image). By separating model representation from actual implementation, Caffe allows experimentation and seamless switching among platforms for ease of development and deployment from prototyping machines to cloud environments. Caffe is maintained and developed by the Berkeley Vision and Learning Center (BVLC) with the help of an active community of contributors on GitHub. It powers ongoing research projects, large-scale industrial applications, and startup prototypes in vision, speech, and multimedia.
翻译:CAFE为多媒体科学家和从业者提供了一个清洁和可修改的框架,用于最先进的深层次学习算法和一系列参考模型,这个框架是BSD许可的C++图书馆,配有Python和MATLAB装饰品,用于培训和部署通用的革命神经网络和其他关于商品结构的深层模型。 CUDA GPU计算咖啡适合工业和互联网规模的媒体需求,每天在单一K40或Titan GPU上处理超过4 000万张图像(每张2.5毫克)。通过将模型代表与实际执行分开,CAFE允许在平台之间进行实验和无缝转换,以便于开发和从原型机器到云环境的部署。 CAffe由伯克利愿景和学习中心(BVLC)在GitHub积极的贡献者社区的帮助下维护和开发。它授权正在进行的研究项目、大规模工业应用和启动的视觉、语言和多媒体原型。