Sequence alignment supports numerous tasks in bioinformatics, natural language processing, pattern recognition, social sciences, and others fields. While the alignment of two sequences may be performed swiftly in many applications, the simultaneous alignment of multiple sequences proved to be naturally more intricate. Although most multiple sequence alignment (MSA) formulations are NP-hard, several approaches have been developed, as they can outperform pairwise alignment methods or are necessary for some applications. Taking into account not only similarities but also the lengths of the compared sequences (i.e. normalization) can provide better alignment results than both unnormalized or post-normalized approaches. While some normalized methods have been developed for pairwise sequence alignment, none have been proposed for MSA. This work is a first effort towards the development of normalized methods for MSA. We discuss multiple aspects of normalized multiple sequence alignment (NMSA). We define three new criteria for computing normalized scores when aligning multiple sequences, showing the NP-hardness and exact algorithms for solving the NMSA using those criteria. In addition, we provide approximation algorithms for MSA and NMSA for some classes of scoring matrices.
翻译:序列对齐支持生物信息学、自然语言处理、模式识别、社会科学和其他领域的众多任务。虽然在许多应用中可以快速地对齐两个序列,但同时对齐多个序列的配对过程自然比较复杂。虽然大多数多个序列对齐(MSA)的配方是NP-硬的,但已经开发出几种方法,因为它们可以优于双对对齐配方法,或对某些应用来说是必要的。不仅考虑到相似之处,而且比较序列(即正常化)的长度可以提供比非正常或后正常方法更好的对齐结果。虽然已经为对齐顺序对齐制定了一些标准化方法,但没有为管理事务协议提出任何建议。这项工作是为制定正常管理事务协议方法所作的首次努力。我们讨论了标准化多个序列对齐的多个方面(NSA)。我们确定了在对齐多个序列时计算标准化分数的三项新标准,用这些标准显示NP-硬性和精确算法来解决NMSA。此外,我们为某些等级的矩阵提供了特派任务生活津贴和NMSA的近似算法。