When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to problems in quantum communication and computation. Previous work has shown that the general membership problem for quantum correlations is computationally undecidable. In the current work we show something stronger: there is a family of constant-sized correlations -- that is, correlations for which the number of measurements and number of measurement outcomes are fixed -- such that solving the quantum membership problem for this family is computationally impossible. Thus, the undecidability that arises in understanding Bell experiments is not dependent on varying the number of measurements in the experiment. This places strong constraints on the types of descriptions that can be given for quantum correlation sets. Our proof is based on a combination of techniques from quantum self-testing and from undecidability results of the third author for linear system nonlocal games.


翻译:当两个空间分离的缔约方对未知的缠绕量子状态进行测量时,它们能够实现什么相关关系? 确定某个特定关联是否是量子关系有多困难? 这些问题是量子通信和计算问题的核心。 先前的工作表明, 量子相关关系的一般成员问题是无法计算出来的。 在目前的工作中,我们显示出更强的特征: 存在一个具有恒定大小关联的组合 -- 即测量数量和测量结果数量固定的关联 -- 如此一来, 无法解决这个家族的量子成员问题。 因此, 在理解贝尔实验中产生的不可估量性并不取决于实验中的测量数量。 这对量子相关组合可以给出的描述类型造成了很大的限制。 我们的证据基于量子自我测试技术的组合,以及线性系统非本地游戏第三作者的不可确定性结果。

0
下载
关闭预览

相关内容

【斯坦福CS224W】图神经网络GNN高级主题,60页ppt
专知会员服务
72+阅读 · 2021年3月5日
专知会员服务
80+阅读 · 2020年12月22日
专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月23日
Arxiv
0+阅读 · 2021年3月21日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【斯坦福CS224W】图神经网络GNN高级主题,60页ppt
专知会员服务
72+阅读 · 2021年3月5日
专知会员服务
80+阅读 · 2020年12月22日
专知会员服务
51+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
4+阅读 · 2018年6月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员