Volume estimation in large indoor spaces is an important challenge in robotic inspection of industrial warehouses. We propose an approach for volume estimation for autonomous systems using visual features for indoor localization and surface reconstruction from 2D-LiDAR measurements. A Gaussian Process-based model incorporates information collected from measurements given statistical prior information about the terrain, from which the volume estimate is computed. Our algorithm finds feasible trajectories which minimize the uncertainty of the volume estimate. We show results in simulation for the surface reconstruction and volume estimate of topographic data.
翻译:大型室内空间的量估是工业仓库机器人检查方面的一个重要挑战。我们建议采用一个方法,利用室内本地化和从2D-LiDAR测量法进行表面重建的视觉特征,对自主系统进行量估。基于高森过程的模型包含根据事先统计的地形数据采集的测量数据收集的信息,从中计算体积估计数。我们的算法发现可行的轨迹,可以最大限度地减少体积估计的不确定性。我们展示了地面重建的模拟结果和地形数据量估。