Recently, most siamese network based trackers locate targets via object classification and bounding-box regression. Generally, they select the bounding-box with maximum classification confidence as the final prediction. This strategy may miss the right result due to the accuracy misalignment between classification and regression. In this paper, we propose a novel siamese tracking algorithm called SiamRCR, addressing this problem with a simple, light and effective solution. It builds reciprocal links between classification and regression branches, which can dynamically re-weight their losses for each positive sample. In addition, we add a localization branch to predict the localization accuracy, so that it can work as the replacement of the regression assistance link during inference. This branch makes the training and inference more consistent. Extensive experimental results demonstrate the effectiveness of SiamRCR and its superiority over the state-of-the-art competitors on GOT-10k, LaSOT, TrackingNet, OTB-2015, VOT-2018 and VOT-2019. Moreover, our SiamRCR runs at 65 FPS, far above the real-time requirement.


翻译:最近,大多数以性别网络为基础的跟踪器通过对象分类和捆绑框回归定位目标。 一般来说, 它们选择了以最大分类信任度为最终预测的捆绑框。 由于分类和回归之间的精确性不匹配, 此项策略可能会错失正确结果。 在本文中, 我们提出一个新的 SiamRCR 跟踪算法, 以简单、 光和有效的解决办法解决这个问题。 它在分类和回归分支之间建立了对等联系, 从而可以动态地对每个正样的损耗进行重估。 此外, 我们添加了一个本地化分支来预测本地化的准确性, 从而可以在推断过程中取代回归援助链接。 这个分支使得培训和推论更加一致。 广泛的实验结果表明, SiamRCR 及其优于TON- 10k、 LaSOT、 TrackNet、 OTB-2015、 VOT-2018 和 VOT-2019 。 此外, 我们的SiamRCR 运行于65 FPS, 远高于实时要求 。

0
下载
关闭预览

相关内容

【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
20年单类别(One-Class)分类全面综述论文,从2001到2020
专知会员服务
22+阅读 · 2021年1月12日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月8日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
3+阅读 · 2018年3月22日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关VIP内容
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
20年单类别(One-Class)分类全面综述论文,从2001到2020
专知会员服务
22+阅读 · 2021年1月12日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月8日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员