Wireless traffic is exploding, due to the myriad of new connections and the exchange of capillary data at the edge of the networks to operate real-time processing and decision making. The latter especially affects the uplink traffic, which will grow in 6G and beyond networks, calling for new optimization metrics that include energy, service delay, and electromagnetic field (EMF) exposure (EMFE). To this end, reconfigurable intelligent surfaces (RISs) represent a promising solution to mitigate the EMFE, thanks to their ability of shaping and manipulating the impinging electromagnetic waves. In line with this vision, this paper proposes an online adaptive method to mitigate the EMFE under end-to-end delay constraints of a computation offloading service, in the context of RIS and multi-access edge computing (MEC)-aided wireless networks. The goal is to minimize the long-term average of the EMF human exposure under such constraints, investigating the advantages of RISs towards blue (i.e. low EMFE) communications. A multiple-input multiple-output (MIMO) system is investigated as part of the visions towards 6G. Focusing on a typical scenario of computation offloading, the method jointly and adaptively optimizes user precoding, transmit power, RIS reflectivity parameters, and receiver combiner, with theoretical guarantees on the desired long-term performance. Besides the theoretical results, numerical simulations assess the performance of the proposed algorithm, when exploiting accurate antenna patterns, thus showing the advantage of the RIS and that of our method, compared to benchmark solutions.


翻译:无线交通正在爆炸,原因是网络边缘有无数新的连接,并交流了用于实时处理和决策的毛细数据,后者特别影响到上链路流量,在6G网络内外将增长,要求采用新的优化度量,包括能源、服务延迟和电磁场接触(EMFE),为此,可重新配置的智能表面(RIS)是缓解EMFE的一个大有希望的解决办法,因为它们能够形成和操纵直通电磁波。根据这一愿景,本文件建议采用在线调整方法,在计算卸载服务的端到端的延迟限制下,减少EMFE的上链路流量,在RIS和多接入边缘计算辅助无线网络的背景下,要求采用新的优化度度度度度度度度,目的是在这种制约下最大限度地减少EMFE人类长期接触的平均值,调查RIS对蓝色(即低EMFE)通信的优势。 多重输出(IMO)系统将多输出率(EMFE)在计算结果的端端端端到端端端端端框时,从而将SIMUS的模型的精度的精度的精度和精度的精度的精度值分析模型模型的精度与精确度的精度的精度的精度的精度值分析模型的精度进行整合。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月24日
Arxiv
34+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员