Recommendation is a prevalent and critical service in information systems. To provide personalized suggestions to users, industry players embrace machine learning, more specifically, building predictive models based on the click behavior data. This is known as the Click-Through Rate (CTR) prediction, which has become the gold standard for building personalized recommendation service. However, we argue that there is a significant gap between clicks and user satisfaction -- it is common that a user is "cheated" to click an item by the attractive title/cover of the item. This will severely hurt user's trust on the system if the user finds the actual content of the clicked item disappointing. What's even worse, optimizing CTR models on such flawed data will result in the Matthew Effect, making the seemingly attractive but actually low-quality items be more frequently recommended. In this paper, we formulate the recommendation models as a causal graph that reflects the cause-effect factors in recommendation, and address the clickbait issue by performing counterfactual inference on the causal graph. We imagine a counterfactual world where each item has only exposure features (i.e., the features that the user can see before making a click decision). By estimating the click likelihood of a user in the counterfactual world, we are able to reduce the direct effect of exposure features and eliminate the clickbait issue. Experiments on real-world datasets demonstrate that our method significantly improves the post-click satisfaction of CTR models.


翻译:为了向用户提供个性化的建议,产业界的玩家会接受基于点击行为数据建立预测模型的机器学习,更具体地说,根据点击行为数据建立预测模型。这被称为点击浏览率(CTR)预测,已经成为建立个性化建议服务的金标准。然而,我们争辩说,点击与用户满意度之间有很大差距 -- -- 用户用具有吸引力的标题/封面点击某个项目“切换”是常见的。如果用户发现点击项目的实际内容令人失望,这将严重损害用户对系统的信任。更糟的是,在这种有缺陷的数据上优化CTR模型将产生马修效应,使得似乎有吸引力但实际上低质量的项目更经常被推荐。在本文中,我们将建议模型作为反映建议中因果关系因素的因果关系图,通过在因果图表上进行反事实推断来解决点击问题。我们想象到一个反事实世界,每个项目只有暴露特征(即用户在点击之前看到的功能将大大降低真实的满意度,从而降低用户在点击时能够选择的概率),我们制定建议模型,从而大大降低真实性模型。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员