This work extends the recently introduced Alpha-Procrustes family of Riemannian metrics for symmetric positive definite (SPD) matrices by incorporating generalized versions of the Bures-Wasserstein (GBW), Log-Euclidean, and Wasserstein distances. While the Alpha-Procrustes framework has unified many classical metrics in both finite- and infinite- dimensional settings, it previously lacked the structural components necessary to realize these generalized forms. We introduce a formalism based on unitized Hilbert-Schmidt operators and an extended Mahalanobis norm that allows the construction of robust, infinite-dimensional generalizations of GBW and Log-Hilbert-Schmidt distances. Our approach also incorporates a learnable regularization parameter that enhances geometric stability in high-dimensional comparisons. Preliminary experiments reproducing benchmarks from the literature demonstrate the improved performance of our generalized metrics, particularly in scenarios involving comparisons between datasets of varying dimension and scale. This work lays a theoretical and computational foundation for advancing robust geometric methods in machine learning, statistical inference, and functional data analysis.
翻译:本研究扩展了近期提出的对称正定(SPD)矩阵Alpha-Procrustes黎曼度量族,通过引入广义Bures-Wasserstein(GBW)、对数欧氏及Wasserstein距离的推广形式。尽管Alpha-Procrustes框架已在有限维与无限维场景中统一了众多经典度量,但其先前缺乏实现这些广义形式所需的结构要素。我们提出基于单位化希尔伯特-施密特算子与扩展马氏范数的形式化体系,该体系能够构建GBW距离与对数希尔伯特-施密特距离的鲁棒无限维推广。我们的方法还引入了可学习的正则化参数,以增强高维比较中的几何稳定性。复现文献基准的初步实验表明,我们提出的广义度量具有更优越的性能,尤其在涉及不同维度与尺度数据集比较的场景中。本研究为推进机器学习、统计推断与函数型数据分析中的鲁棒几何方法奠定了理论与计算基础。