Prepositions are an important vehicle for indicating semantic roles. Their meanings are difficult to analyze and they are often discarded in processing text. The Preposition Project is designed to provide a comprehensive database of preposition senses suitable for use in natural language processing applications. In the project, prepositions in the FrameNet corpus are disambiguated using a sense inventory from a current dictionary, guided by a comprehensive treatment of preposition meaning. The methodology provides a framework for identifying and characterizing semantic roles, a gold standard corpus of instances for further analysis, and an account of semantic role alternation patterns. By adhering to this methodology, it is hoped that a comprehensive and improved characterization of preposition behavior (semantic role identification, and syntactic and semantic properties of the preposition complement and attachment point) will be developed. The databases generated in the project are publicly available for further use by researchers and application developers.


翻译:预设物是表明语义作用的重要工具,其含义难以分析,在处理文本中往往被抛弃。预设物项目旨在提供一个适合于自然语言处理应用程序的预设物感的全面数据库。在该项目中,FramNetPamp的预设物使用与当前字典的感知清册进行脱钩,并全面处理预设物含义。该方法为识别和定性语义作用提供了一个框架,为进一步分析提供了金色标准实例,并说明了语义作用的改变模式。通过遵循这一方法,人们希望能够开发出一种全面的、改进的预设物行为特征(识别预设物作用,以及预设物补充和附加点的合成和语义特性),项目产生的数据库可供研究人员和应用开发者进一步使用。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【Yoshua Bengio】因果表示学习,附视频与72页ppt
专知会员服务
76+阅读 · 2021年1月7日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
6+阅读 · 2019年6月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关VIP内容
【Yoshua Bengio】因果表示学习,附视频与72页ppt
专知会员服务
76+阅读 · 2021年1月7日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员